LC723341E - ETR Cosic Controller

Overview

The LC723341E is a single-chip microcontroller/electronic tuner that also integrates a 250 MHz PLL circuit and a 1/4-duty 1/2-bias LCD driver on the same chip.

Functions

- Program memory (ROM): 4096×16 bits (8 KB)
- Data memory (RAM): 256×4 bits
- Cycle time: $1.33 \mu \mathrm{~s}$ (all one-word instructions) at 4.5 MHz
- Stack: 8 levels
- LCD driver: 48 to 80 segments (1/4-duty 1/2-bias drive)
- Interrupts: External interrupts: 2 systems

Timer interrupts: 2 systems ($1,5,10$ or 50 ms)

- A/D converter: Four input channels (6-bit successive approximation conversion)
- Dedicated input ports: 8 ports (of which 4 can be switched for use as A/D converter inputs)
- Dedicated output ports: 10 ports (of which 6 are open-drain ports and 4 can be switched between CMOS and opendrain specifications)
- I/O ports: 19 ports (of which 8 can be switched for use as segment ports)
- PLL: Reference frequencies: 3, 3.125, 5, 6.25, 12.5 and 25 kHz

Supports dead zone control (4 types) and features a built-in unlock detection circuit.

- Input frequency (input sensitivity): FM band - 10 to 250 MHz

AM band- 0.5 to 40 MHz

- Input sensitivity: FM band - 35 mV rms (Above $130 \mathrm{MHz}: 50 \mathrm{mV} \mathrm{rms}$)

AM band - 35 mV rms

- IF counting: HCTR input - 0.4 to $12 \mathrm{MHz}(35 \mathrm{mV}$ rms)
- External reset input: The program counter starts from location 0 during CPU and PLL operation
- Reset: Built-in voltage detection reset circuit
- Halt mode: The controller's operating clock is temporarily slowed to reduce current drain.
- Backup mode: The crystal oscillator is stopped.
- Static power on function: Backup mode is cleared using the PF port.
- Beep tone: Frequencies of $0.75,1.25,1.5,2.08 .2 .5,3.125$, and 6.25 kHz
- Memory retention voltage: 0.9 V or higher
- VDD: PLL 4.5 to 5.5 V

CPU 3.5 to 5.5 V

- Package: QIP64E (0.8 mm pitch)

[^0]
Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max		-0.3 to +6.5	V
Input voltage	VIN	All input pins	-0.3 to VDD to +0.3	V
Output voltage	Vout1	PE2, PL0 to PL3	-0.3 to +15	V
	Vout2	All output pins except Vout1	-0.3 to VDD + 0.3	V
Output current	Iout1	PC, PD, PE3, PG, PH, PK, EO	0 to 3	mA
	lout2	PB	0 to 1	mA
	Iout3	PE2, PL0 to PL3	0 to 2	mA
	lout4	S1 to S20	0 to 1	$\mu \mathrm{A}$
	lout5	COM1 to COM4	3	mA
Allowable power dissipation	Pdmax	$\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}$	300	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-45 to +125	${ }^{\circ} \mathrm{C}$

Package Dimensions

unit: mm
3159A

LC723341E

Allowable Operating Ranges at $\mathrm{Ta}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.6$ to 5.5 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{\text {DD }} 1$	PLL operating voltage	4.5		5.5	V
	V_{DD} 2	Memory retention voltage	0.9		5.5	
	$\mathrm{V}_{\mathrm{DD}} 3$	CPU operating voltage	2.6		5.5	
High-level input voltage	V_{1+1}	Input ports other than $\mathrm{V}_{\mathbb{I}} 2, \mathrm{~V}_{\mathbb{I}} 3$, AMIN, FMIN, HCTR, and XIN	$0.7 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	BRES	0.8 V DD		VDD	V
	$\mathrm{V}_{\mathrm{IH}} 3$	The PF port	$0.6 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
Low-level input voltage	VIL1	Input ports other than $\mathrm{V}_{\mathrm{IL}} 2, \mathrm{~V}_{\mathrm{IL}} 3, \mathrm{AMIN}, \mathrm{FMIN}, \mathrm{HCTR}$, and XIN	0		0.3VDD	V
	VIL2	BRES	0		0.2 V DD	V
	$\mathrm{V}_{\text {IL }} 3$	The PF port	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Input amplitude	$\mathrm{V}_{1 \times 1}$	XIN	0.5		1.5	Vrms
	$\mathrm{V}_{1} \mathrm{~N}^{2}$	FMIN: FIN2, AMIN	0.035		0.35	Vrms
	$\mathrm{V}_{1} 3$	FMIN: FIN3	0.05		0.35	Vrms
	VIN4	HCTR	0.035		0.35	Vrms
Input voltage range	VIN5	ADIO, ADI1, ADI2, ADI3	0		VDD	V
Input frequency	Fin1	XIN	4.0	4.5	5.0	MHz
	FIN2	FMIN: $\mathrm{V}_{\text {IN }} 2, \mathrm{~V}_{\mathrm{DD}} 1$	10		130	MHz
	Fin3	FMIN: $\mathrm{V}_{\text {IN }} 3, \mathrm{~V}_{\mathrm{DD}} 1$	130		250	MHz
	Fin4	AMIN(H): $\mathrm{VIN}^{1} 2, \mathrm{~V}_{\mathrm{DD}} 1$	2		40	MHz
	Fin5	AMIN(L): $\mathrm{V}_{\text {IN }} 2, \mathrm{~V}_{\mathrm{DD}} 1$	0.5		10	MHz
	Fin6	HCTR: VIN4, VDD1	0.4		15	MHz

LC723341E

Electrical Characteristics under the Allowable Operating Conditions

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
High-level input current	liH^{1}	$\mathrm{XIN}: \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	2.0	5.0	15	$\mu \mathrm{A}$
	llH^{2}	FMIN, AMIN, HCTR: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	4.0	10	30	$\mu \mathrm{A}$
	$1_{1}{ }^{3}$	Ports PA (pull-down resistors disabled), PC, PD, PF, PG, PH, and PK. BRES: $V_{I}=V_{D D}=5.0 \mathrm{~V}$.			3	$\mu \mathrm{A}$
Low-level input current	l/L1	XIN: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$	-2.0	-5.0	-15	$\mu \mathrm{A}$
	lıL2	FMIN, AMIN, HCTR: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}$	-4.0	-10	-30	$\mu \mathrm{A}$
	lı3	Ports PA (pull-down resistors disabled), PC, PD, PF, PG, PH, and PK. BRES: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{S S}$.			-3	$\mu \mathrm{A}$
Input floating voltage	VIF	PA. Pull-down resistors enabled			0.05 V DD	V
Pull-down resistance	RPD1	PA pull-down resistors. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	75	100	200	k Ω
	RPD2	TEST1 resistance		10		$\mathrm{k} \Omega$
Hysteresis	V_{H}	BRES	$0.1 V_{\text {DD }}$			V
High-level output voltage	VOH^{1}	PB: $\mathrm{IO}=1 \mathrm{~mA}$	VDD-2.0	$\mathrm{V}_{\mathrm{DD}}-1.0$		V
	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	PC, PD, PE3, PG, PH, PK: $\mathrm{IO}_{0}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
	$\mathrm{V}_{\mathrm{OH}}{ }^{3}$	EO: $\mathrm{IO}=500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DD }}$-1.0			V
	VOH4	XOUT: $\mathrm{lO}=200 \mu \mathrm{~A}$	$V_{\text {DD }} 1.0$			V
	VOH	S1 to S20: $\mathrm{lO}=100 \mu \mathrm{~A}$	$V_{\text {DD }} 1.0$			V
	V ${ }^{\text {OH6 }}$	COM1, COM2, COM3, COM4: $\mathrm{IO}=5 \mu \mathrm{~A}$	VDD-0.75	$\mathrm{V}_{\mathrm{DD}}-0.5$		V
Low-level output voltage	VoL1	PB : $\mathrm{IO}=-50 \mu \mathrm{~A}$		1.0	2.0	V
	$\mathrm{V}_{\mathrm{OL}} 2$	PC, PD, PE3, PG, PH, PK: $\mathrm{IO}=-1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\text {OL }}$	EO: $\mathrm{IO}=-500 \mu \mathrm{~A}$			1.0	V
	Vol4	XOUT: $\mathrm{IO}=-200 \mu \mathrm{~A}$			1.0	V
	VoL5	S1 to S20: $\mathrm{IO}=-100 \mu \mathrm{~A}$			1.0	V
	Vol6	COM1, COM2, COM3, COM4: $\mathrm{IO}=-5 \mu \mathrm{~A}$		0.5	0.75	V
	Vol7	PE2, PL0 to PL3: $\mathrm{O}=5 \mathrm{~mA}$			2.0	V
Output off leakage current	loff1	The PB, PC, PD, PE3, PG, PH, PK, and EO ports	-3		+3	$\mu \mathrm{A}$
	loff2	PE2, PL0 to PL3	-100		+100	nA
Output mid-level voltage	V_{M}	COM1, COM2, COM3, COM4: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	2.0	2.5	3.0	V
A/D conversion error		ADIO, ADI1, ADI2, ADI3	-1/2		+1/2	LSB
Power down detection voltage	VDET		2.7	3.0	3.3	V
Current drain	ldD1	VDD1: FIN2 130MHz $\mathrm{Ta}=25^{\circ} \mathrm{C}$		15	20	mA
	IdD2	$V_{\text {DD3 }}$: Halt mode, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 1$		0.6		mA
	IDD3	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, oscillator stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 2$			5	$\mu \mathrm{A}$
	IDD4	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, oscillator stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ *2			1	$\mu \mathrm{A}$

Note: The halt mode current is used to execute 20 instruction steps every 125 ms .

LC723341E

*1 Halt and PLL stop mode current measurement conditions

With all ports other than those mentioned above left open.
With output mode selected for PC and PD.
With segment mode selected for S13 to S20.
Set up halt mode with a software instruction.
The state where CPU operation is stopped without
stopping the crystal oscillator.
*2 Backup mode current measurement conditions

With all ports other than those mentioned above left open.
With output mode selected for PC and PD.
With segment mode selected for S13 to S20.
Set up backup mode with a software instruction.
The state where the crystal oscillator is stopped.

Pin Assignment

Top view

Block Diagram

Pin Functions

Pin No.	Symbol	I/O	Description	Equivalent circuit
$\begin{array}{r} 64 \\ 1 \end{array}$	$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	4.5 MHz crystal oscillator circuit connections	
2	TEST1	1	IC test pin This pin must be connected to ground during normal operation.	-
$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PA0 } \\ & \text { PA1 } \\ & \text { PA2 } \\ & \text { PA3 } \end{aligned}$	1	These input ports are used as the key return ports and are designed with a low threshold voltage. When a key matrix is formed with the PB port, multiple key presses with up to 3 keys can be detected. The four pull-down resistors are enabled/disabled together with an IOS instruction ($\mathrm{PWn}=2, \mathrm{~b} 1$). The pull-down resistors cannot be controlled individually. In backup mode, this port goes to the input disabled state, and the pull-down resistors will be in the disabled state after a reset.	Input with built-in pull-down resistor
$\begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \end{array}$	$\begin{aligned} & \text { PB0 } \\ & \text { PB1 } \\ & \text { PB2 } \\ & \text { PB3 } \end{aligned}$	O	These output ports are used as the key source ports and can be set up to be either unbalanced outputs or open-drain outputs. The output type is set with an IOS instruction ($\mathrm{PW}=2, \mathrm{~b} 0, \mathrm{~b} 2, \mathrm{~b} 3$). When used set to the unbalanced output circuit type, diodes to prevent short circuits due to multiple key presses are not required. If used set to the opendrain output circuit type, pull-up resistors between VDD and the port pins are required. In backup mode, this port goes to the output high-impedance state. After a reset, this port will be in the output high-impedance state, and will remain in that state until an output instruction (an OUT, SPB, or RPB instruction) is executed. *: Note that the output impedance requires care if these pins are used for any purpose other than as key source outputs.	Unbalanced CMOS push-pull or n-channel open-drain output
$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { PC0 } \\ & \text { PC1 } \\ & \text { PC2 } \\ & \text { PC3 } \end{aligned}$	I/O	General-purpose I/O ports. *1 The IOS instruction (PWN =4) is used to switch between the general-purpose input and output port functions. The I/O direction can be set in 1-bit units. (0: input, 1: output) In backup mode, this port goes to the input disabled high-impedance state. After a reset, the general-purpose input port function will be selected.	CMOS push-pull circuit
$\begin{aligned} & 18 \\ & 17 \\ & 16 \\ & 15 \end{aligned}$	$\begin{gathered} \text { PDO/INT0 } \\ \text { PD1/INT1 } \\ \text { PD2 } \\ \text { PD3 } \end{gathered}$	I/O	General-purpose I/O ports. *1 The IOS instruction (PWN $=5, b 0, b 1$) is used to switch between the general-purpose input and output port functions. The I/O direction can be set in 1-bit units. (0 : input, 1: output) Two of these port pins can be used as external interrupt inputs. In that case, the I/O direction must be set to input, and rising or falling edge detection must be selected with an IOS instruction (PWN = 3, b0, b1). In backup mode, this port goes to the input disabled high-impedance state. After a reset, the general-purpose input port function will be selected.	CMOS push-pull circuit

Note: *1 When ports that can be switched between input and output are used as output ports, the output data must be established in advance with an OUT, SPB, or RPB instruction before the port is set to output mode with an IOS instruction.

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	I/O	Description	Equivalent circuit
20	PE2	0	PE2 is an open-drain output port. A pull-up resistor between this port and VDD is required. In backup mode, PE2 goes to the high-impedance state. After a reset, it remains at the low level until an output instruction is executed.	N -channel open-drain output
18	PE3/BEEP	0	General-purpose output or beep tone output shared-function port. The BEEP instruction is used to switch between the general-purpose output and beep tone output functions. To use this port as a general-purpose output port, execute a BEEP instruction with b3 $=0$ to set up the general-purpose output function. If $\mathrm{b} 3=1$, the beep tone output function will be selected. Bits b0, b1, and b2 select the beep tone frequency. The LC723341E provides seven beep tone frequencies. *: When the PE3 port is set to the beep tone function, executing an output instruction only switches the state of the internal output latch and has no effect on the beep tone output. In backup mode, this port goes to the high-impedance state. This state is maintained until either an output instruction or a BEEP instruction is executed. After a reset, the general-purpose output port function will be selected.	CMOS push-pull output
$\begin{aligned} & 24 \\ & 23 \\ & 22 \\ & 21 \end{aligned}$	PFO/ADIO PF1/ADI1 PF2/ADI2 PF3/ADI3	1	General-purpose input or A/D converter input shared-function ports. The IOS instruction ($\mathrm{PW} \mathrm{n}=\mathrm{FH}, \mathrm{b} 0$ to b 3) is used to switch between the general-purpose input and A / D converter input functions. The function can be switched in 1-bit units. (0 : general-purpose input, 1: A/D converter input) When the A/D converter input function is selected, the pin to be A / D converted is selected with the IOS instruction ($\mathrm{PWn}=1$). The A / D converter is started with the UCC instruction ($\mathrm{b} 3=1, \mathrm{~b} 2=1$). The ADCE flag is set when the conversion completes. The INR instruction is used to read out the data. *: Since CMOS input is disabled, the data read out will always be zero if an input instruction is executed for a port pin set to analog input mode. Execute an IOS instruction ($\mathrm{PWn}=0, \mathrm{bO}$ to b 3) to set the port that clears backup mode. In backup mode, this port goes to input disabled high-impedance state. After a reset, the general-purpose input port function will be selected. The conversion time for the 6 -bit successive approximation A/D converter is 0.64 ms . The A/D converter full-scale voltage is 63/96 of VDD.	CMOS input or analog input
$\begin{aligned} & 28 \\ & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { PK0 } \\ & \text { PK1 } \\ & \text { PK2 } \end{aligned}$	1/O	These are general-purpose I/O ports. *1 The IOS instruction $(P W N=A)$ is used to switch between the general-purpose input and output port functions. The I/O direction can be set in 1-bit units. (0: input, 1: output) In backup mode, this port goes to the input disabled high-impedance state. After a reset, the general-purpose input port function will be selected.	
$\begin{aligned} & 32 \\ & 31 \\ & 30 \\ & 29 \\ & 36 \\ & 35 \\ & 34 \\ & 33 \end{aligned}$	$\begin{aligned} & \text { S17/PG0 } \\ & \text { S18/PG1 } \\ & \text { S19/PG2 } \\ & \text { S20/PG3 } \\ & \\ & \text { S13/PH0 } \\ & \text { S14/PH1 } \\ & \text { S15/PH2 } \\ & \text { S16/PH3 } \end{aligned}$	1/O	LCD driver segment output or general-purpose l/O shared-function ports. *1 The IOS instruction is used to switch between the segment output and general-purpose I/O functions and for I / O direction switching for the general-purpose port function. - When used as segment output ports PG port ... IOS instruction (PWn = B, b0 to b3) 0: Segment output PH port ... IOS instruction ($\mathrm{PWn}=\mathrm{C}, \mathrm{b} 0$ to b3) 0: General-purpose I/O These pins can be switched in 1-bit units. -When used as general-purpose I/O ports PG port ... IOS instruction (PWn = 6, b0 to b3) 0: Input PH port ... IOS instruction ($\mathrm{PWn}=7, \mathrm{bO}$ to b3) 1: Output The I/O directions of these pins can be set in 1-bit units. In backup mode, when used as general-purpose output ports, the pins go to the input disabled high-impedance state. When used as segment outputs, these pins will be held fixed at the low level. After a reset, the segment output function will be selected.	CMOS push-pull circuit

Note: *1 When ports that can be switched between input and output are used as output ports, the output data must be established in advance with an OUT, SPB, or RPB instruction before the port is set to output mode with an IOS instruction.

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	1/O	Description	Equivalent circuit
48-37	S1-S12	O	LCD driver segment output pins. This driver implements $1 / 4$-duty $1 / 2$-bias drive. The frame frequency is 75 Hz . In backup mode, after a reset, and after an LCD off instruction has been executed, these pins will be held fixed at the low level.	
$\begin{aligned} & 62 \\ & 61 \\ & 60 \\ & 59 \end{aligned}$	COM1 COM2 COM3 COM4	O	LCD driver common output pins. This driver implements $1 / 4$-duty $1 / 2$-bias drive. The frame frequency is 75 Hz . In backup mode, after a reset, and after an LCD off instruction has been executed, these pins will be held fixed at the low level.	
69	BRES		System reset pin. If this pin is held low for at least one machine cycle during CPU operation or in halt mode, the system will be reset and execution will continue with the program counter set to location 0.	$\square \longrightarrow-$
54	HCTR	1	Dedicated universal counter input port. - For frequency measurement, select frequency measurement mode with the UCD instruction $(\mathrm{b} 3=0, \mathrm{~b} 2=0)$ and start the counter with the UCC instruction. The CNTEND flag will be set when the count completes. In this mode, the input operates as an AC amplifier. Thus the input must be capacitance coupled. Input is disabled in backup mode, in halt mode, during a reset, and in PLL stop mode.	CMOS amplifier input
56	FMIN	1	FM VCO (local oscillator) input. This pin is selected using the PLL instruction CW1 field. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, during a reset, and in PLL stop mode.	CMOS amplifier input
57	AMIN	1	AM VCO (local oscillator) input. This pin is selected and the bandwidth set using the PLL instruction CW1 field. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, during a reset, and in PLL stop mode.	CMOS amplifier input
59	EO	0	This is the main charge pump output. When the frequency of the local oscillator divided by N is higher than the reference frequency, a high level is output, and when it is lower, a low level is output. This pin goes to the high-impedance state when the frequencies match. This pin goes to the output high-impedance state in backup mode, in halt mode, during a reset, and in PLL stop mode.	

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	I/O	Description	Equivalent circuit
63	PLO		Open-drain output port. Pull-up resistors must be inserted between these port pins	N-channel open-drain output
62	PL1	O	and VDD. 61	PL2
60	PL3		These pins go to the high-impedance state in backup mode. After a reset, the output remains at the low level until an output instruction is executed.	
25	VSS		Power supply connections. lonnect the VSS pins to the minus side (ground) of the power supply. 58	VSS
55	VDD	-	Connect the VDD pin to the plus side.	

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 2004. Specifications and information herein are subject to change without notice.

[^0]: Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
 SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

